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1. Introduction 
Over the past decades a large amount of work has been done on inviscid, steady 

progressive, gravity waves on a free surface. However, waves which occur in nature 
are never, in fact, free-surface waves, since they are always beneath a fluid of finite 
density, if only air. In  spite of this, very little work has been done on finite-amplitude 
interfacial waves. Tsuji & Nagata (1973) carried out a perturbation expansion in 
wave amplitude to fifth order, for interfacial waves between two stationary fluids. 
Holyer (1979) extended the calculation using the computer and resorted to Pade 
approximants to sum the resulting series. Meiron & Saffman (1983) investigated 
numerically the limiting highest wave and demonstrated the existence of over- 
hanging gravity waves of permanent form. 

Finite-amplitude interfacial waves between two fluids in relative motion 
(occasionally called waves with current) have been considered by a number of 
investigators. Drazin (1970), Maslowe & Kelly (19701, Nayfeh & Saric (1972) and 
Weissman (1979) developed weakly nonlinear solutions for unbounded fluids. Pullin 
& Grimshaw (1983a, b )  derived a third-order expansion for arbitrary depths and 
obtained numerical solutions for nonlinear progressive waves for a thin upper layer 
in the Boussinesq limit. Miles (1986) derived a second-order expansion for arbitrary 
depths and studied the evolution equations that govern Kelvin-Helmholtz waves in 
the parametric neighbourhood of the critical point. The work in this paper on flow 
of a gas over a thin liquid film closely follows the development of Saffman & Yuen 
(1982), who considered fluids of infinite extent and identified two different factors 
which limit the existence of steady gravity-wave solutions. 

The first factor is what they called a ‘geometrical limit ’, a t  which the wave profiles 
become unphysical as the wave height increases. Familiar examples of this are Stokes 
surface waves which develop a sharp corner a t  the crest and capillary waves for 
which the wave profile crosses itself a t  a critical height (Crapper 1957). 

The second factor is what they called a ‘dynamical limit ’. It is encountered when 
the current velocity U is increased, with the wave height kept fixed. For U larger 
than a critical U,, solutions a t  a given wave height cease to exist although the 
‘limiting wave ’ profile is smooth and exhibits no unphysical properties. For very 
small heights this dynamical limit is associated with the well-known Kelvin- 
Helmholtz instability ; it may be interpreted as the non-existence of steady linear 
waves of a given wavelength when U is sufficiently large. For finite-amplitude waves 
the critical current U, is a function of the wave height. 

The effects of finite fluid depth and current velocity are investigated in the present 
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paper. Only the lower fluid depth d ,  is varied so the waves are functions of four 
parameters: wave amplitude a ,  fluid density ratio r ,  the relative velocity of the 
fluids U and depth. For small-amplitude waves, algebraic expressions have been 
obtained for the leading-order nonlinear corrections. To obtain results for larger 
amplitudes, a new numerical method has been developed, which can handle fluids of 
arbitrary uniform depth and any density ratio. 

The dynamical limit identified by Saffman & Yuen (1982) is shown to be influenced 
by changes in the fluid depth in an unexpected way. A very interesting result, 
brought out both by the analytical and the numerical calculation, is that for very 
shallow lower fluid (or equivalently long wavelengths) there are no steady wave 
solutions of any amplitude for current velocities higher than the critical U,, 
calculated from the linear Kelvin-Helmholtz analysis. 

The question of the geometrical limit for waves of large height is also addressed. 
Extensive numerical calculations performed for the air-water system indicate that 
the location where the waves steepen with increasing amplitude depends strongly on 
the current velocity. These results imply that, if water waves are caused to break 
under the action of wind by reaching a limiting height, the point of breaking should 
depend on the wind velocity. This is an example of a situation where air, despite its 
very small density compared with that of water, has a profound effect on the 
behaviour of the system. 

In $2 the mathematical formulation of the problem is given. The weakly nonlinear 
approximation is developeed in $ 3  and the numerical method in $4. Finally, the main 
results are presented in $ 5  are further discussed in $6. 

2. Formulation of problem 
Periodic gravity waves are considered at the interface between two fluids of 

uniform depth. The fluids have different densities and the upper is moving relative 
to the lower with a horizontal velocity U .  They are taken to be incompressible and 
inviscid and the motion is assumed to be irrotational. Solutions are obtained for two- 
dimensional, periodic waves of wavelength L, which propagate without change of 
shape with phase speed C, in the direction of U .  For the purpose of calculating steady 
waves, there is no loss of generality in taking U parallel to C, as an arbitrary constant 
transverse velocity may be linearly superposed on the upper fluid's motion (Saffman 
& Yuen 1982). Properties of the lower fluid are denoted by 1 and those of the upper 
fluid, by 2 .  The two fluids are assumed to be stably stratified by gravity, so 
p, < pl .  Units of length, mass and time are chosen so that the wavelength L = 27c, the 
lower fluid density p1 = 1 and the gravitational acceleration g = 1 .  Equivalently, all 
lengths are non-dimensionalized with the wavenumber k: and the velocities are 
Froude numbers using k-' as characteristic length. 

The flow is sketched in figure 1. Rectangular coordinates (x, y) are chosen such that 
the x-axis is horizontal and the y-axis is directed vertically upwards. The interface 
is located a t  y = 7 and the bottom and top boundaries at - d ,  and d,  respectively. 
The origin is chosen so that the mean elevation 7 is zero. The reference frame is such 
that the fluid velocity averaged over one wave cycle (circulation), at any fixed depth 
within the lower fluid, is zero. For finite upper-fluid depth, the current velocity U is 
defined similarly. It equals the fluid velocity averaged over one cycle, on any fixed 
height within the upper fluid. For an unbounded upper fluid, U is simply the fluid 
velocity a t  infinity. 
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FIGURE 1. Sketch of flow system. 

The kinematic boundary conditions, that require the interface to move wi 
vertical velocity of the fluids, are 

a7 a$,a7 a$, 
at ax ax ay +--=- a t y = q  ( i = l , 2 ) .  - 

For waves of permanent form 

h the 

where C, is the wave velocity in the reference frame used. If (2.2) is substituted into 
(2.1) it follows that 

(2.3) 
a7 
ax -CR- = V $ i - a ,  

where a is the vector (-ar/ax, 1) which is normal to the interface. The fluid velocity 
component normal to the interface is the dot product of the velocity potential 
gradient and the unit normal vector n. If a is written as the unit normal n times the 
magnitude of 01 it follows from (2.3) that 

or 

(2.4) 

Equation (2.5) is the kinematic boundary condition used. For reasons that will 
become clearer with the development of the boundary integral calculation, the above 
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condition is applied to each fluid in a reference frame such that the fluid has 
circulation zero (or is a t  rest a t  infinity). Therefore, 

(2.7) 

A second rectangular coordinate system (X, Y )  is considered now, moving in the 
positive x-direction with the waves, a t  speed C. I n  this reference frame the motion 
is independent of time. The dynamic boundary condition, which is continuity of 
pressure a t  the interface, is applied in this coordinate system. Bernoulli's equation 
above and below the interface is used to obtain expressions for the pressure. 

(2 .8)  
Pl Pz 
- = -i(V$1)2-ggy+Kl, 
P1 PZ 

- = -$(V$z)z-gy+Kz, 

where K,, Kz are Bernoulli constants. Combining these equations on y = 7 where 
Pl = Pz, 

+q:-irqi+ (1  - r )  gq + K = 0, (2.9) 

where d = ( V $ J Z >  d = (v#z)2> 
r = pz/pl, K = rK,-K,. 

Equation (2.9) is the basis of the proposed numerical computation. For unbounded 
fluids the constant K can be calculated in advance (Saffman & Yuen 1982) as 

K = $r(C- U)2-$?. (2.10) 

For fluids of finite depth, however, K is not known a priori and is treated as one more 
unknown. 

3. Weakly nonlinear approximation 
The properties of weakly nonlinear steady waves were obtained by using 

Whitham's averaged variational principle (see Whitham 1974, 5 16.6). The alter- 
native of substituting Stokes expansions directly in the original set of equations 
and boundary conditions involves much lengthier algebra and was not attempted. 

For irrotational interfacial waves with a current U and lower and upper 
boundaries a t  -d, and d, respectively (d, > 0, d, > 0), the averaged Lagrangian is 
given by 

L = - rdl k + i ( V $ l ) z +  gy] dy - rz [ r = + W # J 2  W Z  + v y ]  dy--Lo, (3.1) 
7 

where the overbar denotes averaging over one cycle of the wave phase and 

is included only when one or both boundaries move to  infinity, in order to  ensure a 
convergent value for L. Note that in the present section the frame of reference is fixed 
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relative to the lower fluid and the units are arbitrary, so k and g appear in the 
equations. 

Following Whitham (1974), the leading-order terms for the wave profile and the 
velocity potentials are substituted in the expressions for L. 

~ ( w )  = a cos w + a, cos 2w, (3.3) 

(3.4) $,(x, y, t)  = Al(eku + eZkd1 e-”u) sin w +LA 2 2  (e2ky + e4kd1 e-2ku) sin 2w, 

$2(x,y,t) = Ux+B,(ek~+e2”z e-ku) sinw+’B 2 2( e2ky+e4kdz e-,”) sin2w, (3.5) 

w = kx-wt. (3.6) where w is the wave phase 

It is anticipated that A ,  and B, are O(a) and a,, A, and B, are O(a2),  and terms up 
to O(a4) are retained in the expresion for L. Note that the O(a3) and O(a4) terms in 
the expansions (3.3)-( 3.5) automatically disappear during the averaging procedure, 
so the expression for the Lagrangian L is on the whole of accuracy O(a4). The 
coefficients A,,  B,, A, and B, are eliminated by use of the equations 

aL/aA, = aL/aB, = aL/aA, = aL/aB, = 0, (3.7) 

and after some algebra it is found that 
l + x  

L = - $rU2d, + &(d; - rd;) + $ ~ ( r  - 1) (a2 +a;) + aka2 h2 - + rh’, - ( 1-x 1 - Y  

where > > (3.9) = e-2kd, = e-2kd, 

h = C, = linear phase speed, 

A’ = u-c,, 
and A,  A’ are related by the linear dispersion relation 

h2 - l + x  + rh’2 - l + Y  = l!(l-r) 
1-x 1-y k 

(3.10) 

The value of a, is found from aL/aa, = 0 and is substituted in (3.8). The dispersion 
relation for the weakly nonlinear wave then follows from i3L/a(a2) = 0 :  

r 

(3.11) 
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where x, y are again given by (3.9). For fluids of infinite extent d, + + 00, d ,  + + 00 
and x = y = 0. It can be verified that in this case (3.11) above agrees with that given 
by Saffman & Yuen (1982). 

4. Numerical method 
4.1. Outline 

In the numerical method developed the wave is characterized by its phase velocity 
C and the problem is solved in a coordinate system moving horizontally with velocity 
C. Equation (2.9) is applied a t  N points along the interface. These equations together 
with the specification of the mean wave elevation 7 = 0 form an algebraic system of 
N + l  equations, with unknowns the profile elevations a t  the N points and the 
combined Bernoulli constant K (see equation (2.9)). The system is solved by a 
variation of Newton’s method. At each iteration the fluids’ velocities a t  the interface 
are calculated by applying a boundary integral method for the known boundary (the 
outcome of the last iteration) moving horizontally with the known velocity C. The 
matrix of partial derivatives is calculated numerically by perturbing each elevation 
by a small amount and computing the change in velocity a t  each point. It was found 
to be both efficient and time-saving to calculate the matrix once and use these values 
for all iterations. Owing to the approximation introduced by substituting integrals 
with linear sums, the set of equations is not satisfied exactly. Instead, the mean- 
square error is minimized over the N points. This criterion works satisfactorily in the 
sense that it is easily driven to a minimum, which decreases by increasing the 
discretization N .  

4.2. Coordinate transformation 

For a periodic interface of given shape, moving horizontally with known phase 
velocity C, equations (2.6) and (2.7) give the normal component of the fluid velocity 
on the interface. To calculate the tangential velocity component (and therefore the 
velocity magnitudes ql ,  q2)  a boundary integral method, developed by Longuet- 
Higgins & Cokelet (1976) and extended for finite depths by New, McIver & Peregrine 
(1985), is used. 

Since the motion is periodic in x with period 27c, define for the lower fluid, 

( z  = x+iy). (4.1) 5 = ei8 = e-iz 

Equation (4.1) maps one wavelength of the interface to the closed curve C, and the 
horizontal bottom y = -d, to a circle C, of radius ePd1 (see figure 2). The r and 0 are 
polar coordinates in the [-plane and from (4.1) 

I r = eg or y = lnr,  
e = - x  x=-e.  (4.2) 

The treatment of the upper fluid differs only in that the transformation 

( z  = x+iy), (4.3) 
5 = ei8 = eiz 

is used, with, 
(4.4) 

so that the domain occupied by the upper fluid maps to a bounded region, as for the 
lower fluid. 

If a fluid has a non-zero circulation V ,  then the expression for the velocity 
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I Qplane 

FIQIJRE 2. The transformed [-plane, showing the construction of Green’s function. C, represents 
one wavelength of the interface and C, is the bottom (or top) boundary. 

potential will contain the term Vx and therefore it will not be single-valued in the 
transformed coordinate system. This necessitates the definition of a branch-cut, 
making the computations much more complicated. By choosing (as was done in 
(2.6)-(2.7)) for each fluid a reference frame in which it has zero circulation, this 
difficulty is overcome. 

According to the theory of complex functions, the velocity potential satisfies 
Laplace’s equation in the transformed domain as it did in the original one. Therefore, 
to complete the new formulation, the kinematic boundary conditions need to be 
transformed to the [-plane. If N and n are unit vectors normal to the boundary in 
the (x,y) and [-planes respectively, then it follows that (see figure 2):  

(4.5) 

where X = r cos 0, Y = r sin 0 and X = X ( 0 ) ,  Y = Y(r3) is a parametric description of 
the contour C and 

dr dY dr 
- = cosO--r sin0, 
dx 
dr3 dr3 d0 d0 

- = sine--+r ~ 0 ~ 8 .  

Combining (4.5)-(4.6) with the transformation relations r = ey, 0 = -x it follows 
that, 



194 V .  Bontozoglou and T .  J .  Hanratty 

Therefore the correct kinematic boundary conditions for the transformed problem 

and for the upper, 

4.3. Formulation and solution of integral equation 
The problem of determining the tangential component of velocity a t  the boundary 
is equivalent to the Neumann problem of finding the value of a function q5 whose 
normal gradient is given on a closed contour C,. Suppose x is fixed a t  some point on 
the fluid boundary C,, and < is allowed to vary along C,. Let ( s , n )  be tangential and 
normal coordinates a t  point < on the boundary (see figure 2). The integration of 
Green's third identity around the fluid boundary gives 

(4.10) 

Green's function, G(x; c) ,  is defined a t  all points in the fluid domain except < = x 
and satisfies Laplace's equation. Contour C' is the fluid boundary suitably indented 
to include a semicircular contour C, of vanishingly small radius at x .  Longuet- 
Higgins & Cokelet (1976), dealing with an unbounded fluid, used a simple logarithmic 
singularity 

1 
G(x;<)  = -lnl<-xl, (4.11) 

27t 

and derived an integral equation involving the tangential and normal derivatives of 
the velocity potential 4, along the boundary. For finite fluid of depth d ,  the 
integration path in (4.10) has to  include the bottom contour C,, as well. New et al. 
(1985) used a Green's function involving an image singularity at E* = e-"c5/1<l2 
which is the geometrical reflection of c in the bottom contour C,. The Green's 
function was thus given by 

The advantage of the above choice is that  the normal derivative of G is zero along 
C,. Since, due to the no-penetration boundary condition, this is true for q5 as well, the 
integration in (4.10) needs to be carried out only for the outer contour C,. After some 
algebraic manipulations, (4.12) reduces to 

(4.13) 

(4.9) 

where, a(x ; 6 )  = arg (c - x) - arg (<* - x) and the integral on the right-hand side is 
principal in the sense that the contribution from C, is not included. 
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In the problem considered here, a$/an is known along the boundary from 
(2.6)-(2.7) and a$/as is computed by applying (4.13) once for the lower and once for 
the upper fluid. The left-hand side integral in (4.13) is calculated in exactly the same 
way as by Longuet-Higgins & Cokelet (1976). The right-hand side integral is 
approximated over a number of points N ,  by repeated application of Simpson’s rule 
and the resulting system of linear equations is solved by direct Gaussian elimination. 
Next, the result is transformed to the original coordinate system. By an argument 
similar to the one presented for the kinematic boundary conditions (see equation 
(4.7)) 

a$/as = r(a$/as), (4.14) 

where S is the arclength along the actual wave. Note that, to apply (2.9) which refers 
to a frame moving with the wave velocity C, the tangential component of the 
appropriate horizontal velocity needs to be subtracted from the above result. This is 
C for the lower and ( C - U )  for the upper fluid. 

4.4. Performance and accuracy 
The accuracy of the proposed numerical method was checked by calculating Stokes 
surface waves for various water depths, The Pade approximants calculation 
performed by Cokelet (1977) was duplicated and the results were compared. For a 
discretization of N = 32 points there was agreement to a t  least three decimal figures 
for waves as high as 90% of the limiting one. Increasing the number of points to 48 
achieved the above accuracy for waves that are 94% of the highest. The agreement 
was further confirmed by comparing the wave profiles, which were visually 
indistinguishable. The accuracy of the numerical method was not appreciably 
affected by increased shallowness. 

Interfacial waves between two stationary fluids with density ratio r = 0.1 have 
Seen calculated by Holyer (1979) using Pade approximants and by Saffman & Yuen 
(1982) and Meiron & Saffman (1983) numerically. Results by the present method 
agree to four decimal figures for waves with dimensionless heights up to 0.8. For 
higher waves there is a slight disagreement between the numbers reported by 
Saffman & Yuen and by Holyer. Results using the method just described are in 
closer agreement to those of Saffman & Yuen than to those of Holyer. 

The conclusion from the above comparisons is that the proposed method is 
accurate for the calculation of highly nonlinear waves. The accuracy gradually 
deteriorates as the singular limiting wave is approached. 

5. Results 
5.1. The critical current velocity 

It can be seen from the dispersion relation (3.11) that for linear waves (a- tO) and 
given values of density ratio r ,  current velocity U and fluids depth d,, d,, there are 
two solutions corresponding to the two roots of the quadratic equation for C. These 
are denoted by C, and C-, where C, > C-. For the linear case steady solutions cease 
to exist when U exceeds a critical value U,,, (the second subscript 1 standing for linear) 
given by (G+rz)] l + x  

(E)(Z) ’ 
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P +y\ 
and 

c -  

As before, x = e-2kdl, y = e-2kda and the appropriate units are reintroduced to render 

For finite amplitude waves (a  $; 0) these two solutions continue into two families 
of solutions C+(a) and C-(a). From the form of dispersion relation (3.11) for finite- 
amplitude waves it can be sen that there will again be a critical current U, beyond 
which steady solutions no longer exist. Saffman & Yuen (1982) calculated U,, both 
analytically (second-order approximation) and numerically, for unbounded fluids. 
They were the first to note that the critical current velocity increases for increasing 
wave amplitude a ,  a result that can be viewed as a stabilization of parallel flows by 
waves. Thus, for a given value of U > Ucl, steady interfacial configurations exist on 
unbounded fluids only if there are waves with heights greater than some minimum. 

A main focus of the present work was to determine the dependence of this 
phenomenon on the lower fluid depth. The motivation was to provide an 
understanding of interfacial waves for the flow of gas and liquid in a pipeline. For 
stratified flows, the liquid flowing along the bottom of the pipe is often shallow, with 
depth typically one order of magnitude smaller than the pipe diameter (Andritsos 
1985). Situations in which both the liquid and the gas flow are shallow are also of 
interest in understanding the initiation of slug flow (Lin & Hanratty 1986). 

The value of the critical current velocity U,, correct to second order in the 
amplitude a ,  can be obtained by equating the two roots in (3.11) 

k = 1,g = 1. 

r 

(5.3) 

where, as before, x = e-2d1 and the subscript 2 stands for second-order approximation. 
In  the limit d, + + 00 the equation agrees with that given by Saffman & Yuen (1982). 
For the case of a liquid film of arbitrary depth considered in (5.3), [(U,,/U,,)2-1] 
varies linearly with a2 with the slope of the line varying with fluid depth. Figure 3 
shows this slope, normalized with the deep-fluid slope, as a function of e-lcdl for three 
values of the density ratio ( r  = 0.1,0.5,0.9).  It is evident that for gas-liquid systems 
( r  < 0.1) there is not much change in the slope until kd, becomes very small (note 
that, for example, eckdl = 0.80 corresponds to d, = &L). It is interesting, however, to 
note that there are regions where the slope is negative. In  these regions an increase 
in the amplitude a of steady waves gives rise to a decrease of critical velocity Uc,. This 
is just the opposite of what is found for unbounded fluids in that no steady wave 
solutions of a given wavelength exist for current velocities higher than the critical 
predicted from linear theory Ucl. Even for that velocity, the only steady wave is one 
of zero amplitude. Furthermore, for current velocities less than U,, the dynamical 
limit imposes a maximum allowable wave steepness ka. In this region and for current 
velocities close enough to the critical linear Ucl, large amplitude waves are 
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1 
Lower fluid depth, exp (- kd,) 

FIGURE 3. Slope of the [U:/U,Z, - 13 us. H 2  line (normalized with deep fluid slope) versus depth. 
Weakly nonlinear approximation results for density ratios r = 0.1,0.5,0.9. 

dynamically and not geometrically limited in steepness. It is noted that this 
observation is closely related to Miles’ (1986) findings about the bifurcation 
associated with the critical point for the K-H instability, turning under some 
conditions from supercritical to subcritical. 

The results of the numerical calculation of U, versus waveheight H (H = 2a) for 
density ratio r = 0.1 are shown in figure 4(a, b,  c ) .  The lower fluid depths are ePd1 = 
0.25,0.60 and 0.80 respectively. The numerical results compare well with the weakly 
nonlinear approximation for intermediate to large depths. It is interesting to note 
that, a t  a fixed current speed, the weakly nonlinear theory overestimates the 
minimum wave height for a deep fluid but underestimates it for a shallow fluid. 
Larger deviations appear in the last figure, probably due to a more pronounced 
influence of the bottom boundary on the flow field. 

The results of a numerical calculation of U, versus waveheight H (H = 2a)  for 
density ratio r = 0.29 and lower fluid depth e-dl = 0.9048 are shown in figure 5. At 
these conditions the second-order theory predicts that the critical velocity U, 
decreases with increasing amplitude. The numerical results indicate that, even a t  this 
very shallow depth, the fully nonlinear solution closely follows the weakly nonlinear 
result. Therefore, the unexpected effect of wave amplitude on U, for thin liquid layers 
found with second-order theory is real and not an artifact resulting from ignoring 
higher-order terms in the expansion. 

5.2.  Geometrical limitation of the highest waves 
Holyer (1979) showed that, for waves a t  the interface between two stationary fluids, 
the slope eventually becomes infinite as the amplitude is increased. The location of 
this point of infinite slope depends on the density ratio of the two fluids and moves 
from the crest (a sharp corner) for free-surface waves, to the midpoint for fluids of 
almost equal densities (Boussinesq waves). Meiron & Saffman (1983) demonstrated 
numerically the existence of overhanging waves as steady solutions for two 
stationary fluids. They concluded that a geometrical limitation is associated with 
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5 
H 2  

FIGURE 4. Critical current U, as a function of waveheight H ,  for density ratio r = 0.1 and 
exp( -dl) (a )  0.25; ( b )  0.60; (c) 0.80. Circles are numerical results using 48 points along one wave- 
length. Lines represent the weakly nonlinear approximation given by equation (5.3). 
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HZ 

FIGURE 5. Critical current U, as a function of waveheight H ,  for density ratio r = 0.9 and 
exp (-d,) = 0.9048. 

the surface crossing itself rather than with an infinite slope. Saffman & Yuen (1982) 
speculated that a similar geometrical limitation would exist for fluids in relative 
motion and that the region of singularity would be close to the crest for C, and close 
to the trough for C- waves. 

The numerical method presented in this paper cannot, in its present form, handle 
overhanging waves. Therefore it was used only to detect the approach to a wave with 
an inifinite slope in its profile. When a vertical slope first develops a t  a point in the 
profile, the x-velocity component there will equal the phase speed of the wave and 
will be the maximum along the profile (the profile of an overhanging wave includes 
fluid particles moving horizontally faster than the wave). Therefore, the horizontal 
velocity component of the lower fluid particles along the interface were calculated. 
A maximum develops as the amplitude of the wave increases and its position 
indicates the point where the infinite slope first develops. It is interesting to note that 
this method works for very small density ratios, for which the infinite slope and the 
accompanying overhanging region occur in such a small scale that prohibitively high 
resolution would be required if calculated wave profiles were used to determine 
geometrically limiting waves. 

Results for air-water C, waves are presented ( r  = 0.0013), because of their 
frequent occurrence in practice. Figure 6 (a-d) shows the horizontal velocity 
component of the lower fluid particles along the interface. The depth is e-dl = 0.25 
and different curves on each figure correspond to increasing wave heights. The 
current velocity U is 10, 20,25, and 30 in (a),  ( b ) ,  (c) and ( d )  respectively. It is noted 
that a large region of almost constant horizontal velocity exists near the crest for 
large amplitude waves. A maximum in the x-velocity appears in each plot if the 
amplitude of the wave is large enough. The position of this maximum is about &L, 
&L, gL, and 2 L  away from the crest for current velocities U = 10, 20, 25 and 30. 
Similar calculations for ePd1 = 0.60 indicate that the position of the maximum does 
not depend on the water depth. 

The profiles of some high waves for the above current velocities are shown in figure 
7. The beginning of the high slope region, which moves away from the crest as the 
current velocity U increases, is a t  the location of maximum horizontal velocity. The 
overall shape of the waves is also strongly affected by U .  For low current velocities 
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FIGURE 6(a-e). For caption see facing page. 
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FIGURE 6. The x-velocity component of water particles versus position along one wavelength of 
air-water interface. Exponential depth exp( - d )  = 0.25 and current velocities U,  (a) 10; ( b )  20; 
(c) 25; ( d )  30. The wave amplitudes are: (a) 0.289, 0.476, 0.511, 0.543; ( b )  0.386, 0.581, 0.656, 
0.687, 0.716; (c) 0.486, 0.750, 0.764; ( d )  0.458, 0.658, 0.685 respectively. 

FIGURE 
A, U =  
velocity 

horizontal velocity 

x-Position 

7. Profiles of high air-water waves for current velocities, 0 ,  U = 10; 0, U = 20; 
25 ; 0 ,  U = 30. The lines at the bottom represent the locations of maximum horizontal 
from figure 6. 
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they are peaked a t  the crest, as observed for the free-surface waves of Stokes. As U 
increases, however, the crest flattens and the trough becomes progressively sharper. 
This change agrees with what has been observed experimentally (Wallis & Dobson 
1973). 

6.  Discussion 
6.1. Outline of contibutions 

A new numerical method for calculating periodic, interfacial, gravity waves has been 
developed. I ts  main advantages are that it is accurate for very shallow layers, for a 
wide range of current velocities and for fluids with any density ratio, thus enabling 
the investigation of the practically important case of air-water waves. I ts  main 
disadvantage is that  i t  cannot handle overhanging waves and, therefore, cannot be 
used to calculate the geometrically limiting highest wave. However this does not 
seem to be a fundamental limitation since the boundary integral calculation is known 
to work with overhanging profiles. A modification of the iteration procedure is 
needed to take into account the possibility of a multiple-valued profile. 

This numerical method and a weakly nonlinear approximation were used to  obtain 
new unexpected results on the effect of the depth of the lower fluid on the dynamical 
limit to the existence of progressive waves of permanent form and on the effect of 
current velocity on the shape and limiting form of very high interfacial waves. 

6.2. Eflect of Jluid depth on the dynamical limit 
The increase in the critical current velocity with increasing wave amplitude, 
observed by Saffman & Yuen (1982) for unbounded fluids, is shown to become 
progressively less pronounced with decreasing depth. This effect is most evident for 
large values of density ratio. Furthermore, for small enough values of kd, the effect 
of increasing wave amplitude is just the opposite of what is observed for unbounded 
fluids; the critical velocity U, decreases with increasing amplitude and there are no 
steady wave solutions of given wavelength for current velocities larger than the 
critical predicted from linear theory. 

These results are summarized in figure 8 which shows the variation of 
1(UC2/U,J2- 11 with wave steepness k2a2 for two representative cases, one with 
positive and one with negative slope. Steady wave solutions exist in the region 
between the negative y-axis and the ‘dynamical limit’ line. The solution domain is 
also bounded to the right by the ‘geometrical limit ’ which is not shown in the graph. 
It is evident that  for a positive slope the restriction imposed by the dynamical limit 
is a minimum wave steepness when U > UCl. With a negative slope there are 
no steady solutions for U > U,, and the restriction is a maximum steepness for 

Thus, for deep fluids, unstable K-H disturbances are expected to grow into finite- 
amplitude waves. If interfacial waves generated by a different mechanism already 
exist, they are expected to steepen in accordance with the behaviour of the steady, 
periodic wave solutions. For a shallow enough lower fluid however, weakly nonlinear 
theory predicts that the inertia of the fluids and the gravity force cannot balance for 
any amplitude, for current velocities higher than the critical linear Ue1. For such 
current velocities, gravity waves with wavelengths longer than a given value should 
not be observed. 

U < UC1. 
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FIGURE 8. Critical current U,, as a function of the wave steepnes ka for two representative cases. 
Steady wave solutions exist in the region between the negative y-axis and the ‘dynamical limit’ 
line. 

6.3. Effect of current velocity on the geometric limit 
Holyer (1979) calculated that, for the stagnant air-water system, the vertical 
tangent in the profile appears a t  a distance closer than &L from the crest. Saffman 
& Yuen (1982) noted that, for small current velocities, there exists a special class of 
solutions with waves whose phase velocities equal U .  They are transformations of the 
Stokes (1847) surface waves for C, = U = (1 -r) iCs(H),  with C,(H) being the phase 
speed of the Stokes wave for a given height H .  These waves are known to be 
geometrically limited, right on the crest, by the formation of a sharp corner for 
H = 0.892. 

However, the results of the present work indicate that the location in the profile 
where a vertical tangent appears moves away from the crest and approaches the 
trough for high current velocities. An explanation that reconciles the above results 
is that, as the current velocity increases from zero, the region of singularity in the 
wave profile first moves towards the crest. For some current velocity it is located 
right on the crest, where it degenerates to a sharp corner. As U is increased further 
the region of singularity moves away from the crest, approaching the trough as U 
exceeds the linear critical value Ucl. 

This phenomenon might have interesting implications for the breaking of water 
waves under the action of wind. For the air-water system and small current 
velocities the region of singularity in the wave profile remains very close to the crest. 
As can be seen in figure 7, for a current velocity as high as 10 the wave profile does 
not look very different from a surface wave and therefore the inferences made from 
classical steady-wave theory about breaking originating a t  the crest, still hold. For 
high current velocities, however, both the point of breaking and the shape of the 
wave change drastically and it seems reasonable to argue that a different breaking 
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mechanism might be involved. A conjecture is that a very small-scale overturning 
motion occurs, followed by the formation ofa  turbulent layer of foaming water a t  the 
location of the vertical tangent in the forward face of the wave. However, this 
remains to be investigated. 

This work was supported by the National Science Foundation through Grant NSF 
CBT 88-00980 and by the Shell Companies Foundation. 
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